Localization of the first and second somatosensory areas in the human cerebral cortex with functional MR imaging.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Our objective was to map by means of a conventional mid-field (1.0 T) MR imaging system the somatosensory areas activated by unilateral tactile stimulation of the hand, with particular attention to the areas of the ipsilateral hemisphere. METHODS Single-shot echo-planar T2*-weighted imaging sequences were performed in 12 healthy volunteers to acquire 10 contiguous 7-mm-thick sections parallel to the coronal and axial planes during tactile stimulation of the hand. The stimulation paradigm consisted of brushing the subjects' palm and fingers with a rough sponge at a frequency of about 1 Hz. RESULTS Stimulation provoked a signal increase (about 2% to 5%) that temporally corresponded to the stimulus in several cortical regions of both hemispheres. Contralaterally, activation foci were in the anterior parietal cortex in an area presumably corresponding to the hand representation zone of the first somatosensory cortex, in the posterior parietal cortex, and in the parietal opercular cortex forming the upper bank of the sylvian sulcus and probably corresponding to the second somatosensory cortex. Activation foci were also observed in the frontal cortex. Ipsilaterally, activated areas were in regions of the posterior parietal and opercular cortices roughly symmetrical to those activated in the contralateral hemisphere. The same activation pattern was observed in all subjects. CONCLUSION The activated areas of the somatosensory cortex described in the present study corresponded to those reported in other studies with magnetoelectroencephalography, positron emission tomography, and higher-field functional MR imaging. An additional area of activation in the ipsilateral parietal operculum, unnoticed in other functional MR imaging studies, was also observed.
منابع مشابه
Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging
Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...
متن کاملSexual Dimorphism in Surface Anatomical Parameters of Human Cerebral Cortex in Different Lebes in Normal and Neurodegenerative Subjects: a Stereological and Macroscopical Study
Purpose: This study sought to determine sex differences in surface anatomical parameters (thickness and surface areas) of human cerebral cortex in different lobes of the left hemisphere in normal right-handed subjects and right-handed subjects suffering from Alzheimer and Parkinson's diseases. Materials and Methods: This cross-sectional descriptive study was performed on 72 normal human brains...
متن کاملMapping of the sensorimotor cortex: functional MR and magnetic source imaging.
PURPOSE To assess the reliability and comparability of functional MR imaging and magnetic source imaging for mapping the somatosensory cortex. METHODS Parallel studies were performed in eight volunteer subjects in whom both hemispheres were measured with the use of painless tactile stimulation of the tip of each index finger. Magnetic source imaging was performed using a 37-channel biomagneto...
متن کاملOptical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)
Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...
متن کاملLateralization of cortical function in swallowing: a functional MR imaging study.
BACKGROUND AND PURPOSE While functional MR imaging and other techniques have contributed to our knowledge of functional brain localization, these methods have not been extensively applied to the complex and incompletely understood task of swallowing. We used functional MR imaging to investigate motor cortex activity during swallowing in healthy human adults. METHODS Eight subjects were imaged...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 20 2 شماره
صفحات -
تاریخ انتشار 1999